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Asymptotic solutions in non-equilibrium nozzle flow 

By P. A. BLYTHE 
National Physical Laboratory, Teddington, Middlesex 

(Received 23 December 1963) 

Analytical solutions for the quasi-one-dimensional flow of a gas not in thermo- 
dynamic equilibrium are presented for two distinct types of rate equation, namely, 
the linear rate equation which governs vibrational relaxation, and the non- 
linear rate equation which governs dissociation. The solutions are derived for 
the case when, to a first approximation, the rate equation is uncoupled from the 
remaining flow equations. 

There are, in general, three distinct regions in non-equilibrium nozzle flow. 
First, a so-called near equilibrium region where a perturbation sohtion is 
expected to hold. This region is followed by a narrow transition-layer in which 
there is a rapid departure from equilibrium. Finally, downstream of this layer, 
the energy in the lagging mode tends asymptotically to some constant ‘frozen- 
out’ value. The solutions applicable to each of these three regions are derived 
for both rate equations, the boundary conditions for the transition-layer solution 
and the asymptotic solution are obtained from appropriate matching procedures. 

In particular the structures of the asymptotic solutions are discussed. Several 
approximate methods for determining the asymptotic frozen level of the energy 
in the lagging mode have been proposed in the literature. For the present case, 
when there is only a small amount of energy in the lagging mode, it is shown that 
none of these approximate methods is mathematically correct. 

1. Introduction 
There exist many numerical solutions to the problem of non-equilibrium 

quasi-one-dimensional flow through a nozzle. These solutions have been obtained 
for several types of rate process. Non-equilibrium dissociation has been treated, 
for example, by Bray (1959), Freeman (1959), and Hall & Russo (1959); non- 
equilibrium ionization has been discussed, for example, by Smith (1958), Bray 
& Wilson (1961), Eschenroeder (1962), and Rosner (1962); the effects of vibra- 
tional relaxation have been investigated by Stollery & Smith (1962), and Stollery 
& Park (1963). All these papers showed quite clearly the characteristic feature 
of this type of flow, namely, the eventual ‘freezing-out’ of the energy cr in the 
lagging mode. In  detail, the numerical solutions showed that initially cr followed 
closely its local equilibrium value 5, but that a t  sufficiently large distances down- 
stream there was a rapid increase in the departure from equilibrium and cr 
quickly approached some final asymptotic non-zero value (see figure 1). 
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This effect has important practical consequences since, for example, it  can 
lead to appreciable departures from equilibrium in hypersonic wind tunnels, 
shock tunnels, etc., and also to loss of thrust in rocket nozzles, etc. Consequently, 
several of the above-named authors have presented approximate methods for 
obtaining this asymptotic frozen value. 

! 

Distance 

FIGURE 1. Distribution through the nozzle of the energy in the 
lagging mode (schematic). 0, Freezing point. 

The ‘sudden-freeze ’ approach discussed by Bray (1959)) is perhaps the simplest 
of these approximate methods and is probably the one most widely used in 
practice. The approach is based on the prediction, by qualitative arguments, 
of a ‘freezing point’ which characterizes the position of the region where the 
rapid departure from equilibrium occurs. Upstream of this point i t  is assumed 
that cr is equal to its equilibrium value, while downstream of the freezing point it 
is assumed that cr remains constant at its equilibrium value at the freezing point 
(see figure 1). Hall & Russo (1959) and, for example, Tsuchiya (1962) have also 
used Bray’s approach: the difference between the respective treatments is in the 
definition of the freezing point. 

Both Smith (1958) and Rosner (1962) (see also Eschenroeder 1962) have 
pointed out that in order to obtain the correct asymptotic solution one must 
consider the asymptotic form of the rate equation when cr > 3. However, they 
also assumed that this asymptotic solution could be matched directly to the 
equilibrium solution at some suitable point, which was defined by matching both 
the asymptotic solution for cr and its derivative to the equilibrium solution. 

More recently Stollery & Park (1963) have proposed a further criterion 
for predicting the asymptotic frozen value. This criterion, which was applied 
in particular to the linear rate equation governing vibrational relaxation, 
is empirical in form and is based on the results of their numerical solutions. 
Essentially the criterion implies that the relaxation length suitably non-dimen- 
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sionalized, is independent of the (dimensionless) rate parameter, at  some freezing 
point. 

Although comparison with exact numerical solutions would lead one to believe 
that these solutions are reasonable numerical approximations, there is obviously 
a need for obtaining a mathematically valid asymptotic solution even if only to 
determine the order of magnitude of the error in the approximate solutions. 

In  the present paper a thorough investigation of the solutions of the appropri- 
ate rate equations for dissociation, ionization, and vibrational relaxation is 
carried out for the case when, to a first approximation, the rate equation is 
uncoupled from the remaining flow equations. In  order to justify such an 
assumption it is necessary to assume that a is small in comparison with the total 
enthalpy. When a is sufficiently small it  follows (see e.g. Spence 1961) that the 
first approximation to the solution for the flow variables (velocity, pressure, etc.) 
is given by the usual isentropic solution with a = 0. The first approximation to 
the distribution of a i s  then found by integrating the rate equation using the basic 
isentropic values of the flow variables. In  this limiting case the rate equations 
for dissociation and ionization are similar in form, both being Ricatti equations. 
The rate equation governing vibrational relaxation is assumed to be the usual 
linear one, which is a valid assumption provided that the vibrational mode can 
be represented by a system of harmonic oscillators and that only a small fraction 
of the oscillators are excited. 

The solution to the linear rate equation governing vibrational relaxation has 
already been obtained by the author (Blythe 1963) for this uncoupled case. It 
was shown that the solution for the departure from equilibrium c - 3 depended 
on an integral of the steepest-descents type. The main contribution to this type 
of integral comes from the region near the stationary value of the exponential 
term, i.e. the saddle point (Jeffreys & Jeffreys 1946, p. 472). This saddle point 
corresponds to the region where freezing becomes important. ,Upstream of this 
region the contribution from the integral is small and hence the departure from 
equilibrium is small. Downstream of the region the integral tends to some con- 
stant value and the asymptotic value of the energy a can be determined. It is 
interesting to note that the position of the saddle point is given by the type of 
criterion used by Bray, and by Hall & RUSSO, etc., to define their freezing 
points. 

However, the behaviour of the solution of this rate equation can be more 
readily observed by considering the rate equation in terms of a different depend- 
ent variable. By using the relative departure from equilibrium s = (a-a)/3 
as the dependent variable it can be shown that the position of the saddle point 
is given by the zero of the coefficient of s in the transformed rate equation 
(see equation (2.10)). Because of the temperature dependence of a the trans- 
formed equation is simplified if the reciprocal of the translational temperature 
T(x) ,  rather than the distance x, is used as the independent variable, If the 
variables are suitably non-dimensionalized with respect to their values a t  the 
saddle point, i.e. a t  the zero of the coefficient of s, it follows that the rate equation 
takes the f o ~ m  (see $2 .I) 

N-1 ( d ~ / d [ )  + [G([) - 11 s = 1, (1.1)  
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where 5 is the appropriate dimensionless form of T-1, i.e. 5 = 1 at the saddle 
points. Near 5 = 1 the function G([) can be expanded in the form 

m 

n= 1 
G(5)  = 1 + C ~ ~ ( 5 -  (1.2) 

In  general G(6) is a decreasing function of 5 and as <+m, G(5) -+ 0. The definition 
of N is, for the moment, not important, save that N should be interpreted as a 
large parameter which increases as the position of the saddle point moves down- 
stream. Equation (1.1) is a simple example of a common type of differential 
equation in which the coefficient of the highest-order derivative is a small para- 
meter (N- l )  and the coefficient of a lower order term possesses a zero (such that 
a perturbation solution would be singular at this zero). 

Perturbation solution \ 

Asymptotic solution 

FIGURE 2. Various solution regimes: linear rate equation. 

It is apparent from equation (1.1) that there are three distinct regions of 
interest. First, there is the region 5 < 1 upstream of the saddle point. In  this 
region a perturbation solution is apparently appropriate and this solution corre- 
sponds to the usual near equilibrium solution which is expected to hold upstream 
of the saddle point. Such a solution may need modification near the initial equilj - 
brium stationwhere s = 0 if G(6)isfinite there (Bloom &Ting 1960). This effect (see 
8 2.2) is confined to a narrow region whose thickness is O(A7-l). The perturbation 
solution also breaks down near 5 = 1 which is the region corresponding to the 
rapid transition from the equilibrium solution. The saddle point 5 = 1 will 
henceforth be termed the freezing point in the present analysis. Near <=  1 
the appropriate independent variable is N*(5- 1). Within this narrow region 
the derivative term in equation (1.1) becomes important and s grows rapidly. 
For 5 > 1, G ( 0 - t  0 and s becomes exponentially large (5 becomes exponentially 
small), though c remains finite and tends to some asymptotic non-zero value. 
A schematic representation of this picture is given in figure 2. 

It is shown in fi 2 that the transition layer solution near 6 = 1 can be matched on 
to the perturbation solution (which in turn forms avalid outerlimit of the solution 
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near t = to where s = 0)’by a suitable choice of the arbitrary constant of inte- 
gration. Moreover, the asymptotic solution, where s is exponentially large, can 
be matched as (-+ 1 to the transition layer solution at the downstream edge of 
the transition region. The asymptotic frozen value of the vibrational energy can 
then be determined. Although the formal solution to (1.1) can be written down, 
more insight into the problem can probably be obtained by examining the struc- 
tures of these various regions. In  addition, since the full solution of equation 
( 1.1) is known, the validity of the solutions in these various regions can be assessed. 
This method of solution of equation (1.1) also forms a very useful introduction to 
the method of solution of the non-linear equations governing dissociation and 
ionization for which a formal solution cannot be written down. 

It was pointed out above that both these non-linear equations, in the present 
uncoupled case, are Ricatti equations of the same type and consequently the 
solution for either a dissociating gas or an ionizing gas can be deduced from a 
single study of such a Ricatti equation. As in the linear case it is preferable to 
use s as the dependent variable. In  terms of s the non-linear rate equation 
becomes a second Ricatti equation. In  the transformed Ricatti equation the 
coefficient of s again possesses a zero and this zero corresponds to the freezing 
point (saddle point) in the linear case. The expression defining this zero is again 
similar in form to the criteria defining the freezing points of Bray, etc. The trans- 
formed equation takes the form (see 53.1) 

N-l(ds/dC) + {Wt, N )  - Q(6, 3 ) ) s  + W(t7 N )  s2 = Q(t, w, (1.3) 

where +$ = 1 corresponds to the zero of the coefficient of s (the freezing point) 
and N is again to be interpreted as a large parameter. Also 

a t ,  N )  = f(6, exp N ( 1 -  a 7  

Q(t, N )  = 1 + N - k ( t ) .  

Near g = 1, f(t) and ~ ( t )  have expansions of the form 

In general K ( [ )  is bounded and tends to a finite limit as [-+ co; f(6) is a mono- 
tonically decreasing function of 5 and approaches zero as -+ co. Note, however, 
thatf(t,) (6 = to at s = 0) is not necessarily finite. 

The dominant feature in equation (1.3) is the exponential dependence of 
H ( [ , N )  (equation (1.4)) and the solution is naturally more complex in form 
than in the linear case. However, the solution is still characterized by three 
distinct regions. For t < 1 a perturbation type of solution holds and this again 
corresponds to the usual near-equilibrium solution which is expected to hold 
in this region. The dominant terms in this region are the linear term H ( [ ,  N )  s 
on the left-hand side of equation (1.3) and Q ( [ , N )  on the right-hand side. This 
solution, as in the linear case, needs modification near 6 = to, where s = 0, 
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if f(co) is finite. The thickness of this region near = to is O(N-l exp { - N (  1 -to))) 
(and not O(J7-l) as in the linear case). The perturbation solution breaks down as 
f - .  1 and this region, as before, is characterized by the energy distribution 
breaking away from the equilibrium distribution. Within this transition region 
near ( = 1 the appropriate independent variable is N ( < -  1) and all the terms in 
equation (1.3) are of the same order of magnitude. Downstream of the freezing 
point i t  can be shown that s becomes exponentially Iarge and that the energy 
in the lagging mode tends asymptotically to some constant value. The overall 
picture is sketched out in figure 3. 

8 

f _--------- ------- 
Modification near (=c0 thickness: O(N-' exp{- N(1- 5 o)>) 

Perturbation solution I 1  
f I \  

Asymptotic solution 

FIGURE 3. Various solution r6gimes : non-linear rate equation. 

In  0 3 it  is shown that the solutions in the various regions can again be matched 
on to each other by appropriate choice of the arbitrary constants of integration. 
In  particular, in 53.4, the correct value of the asymptotic frozen level of the 
energy in the lagging mode is derived for either a dissociating or an ionizing gas. 

It is apparent from the present analysis that, for both types of rate equation 
the effect of the transition layer must be taken into account in order to determine 
correctly the asymptotic frozen level. It is not correct to match the asymptotic 
solution directly to the equilibrium solution. The implications of this result are 
considered in detail in $4 with respect to the various approximate asymptotic 
solutions proposed in the literature. 

2. Vibrational relaxation 

2.1. Transformation of rate equation 

This section of the paper is concerned with the quasi-one-dimensional flow of a 
vibrationally relaxing diatomic gas. The thermodynamic model used assumes 
that the translational degrees of freedom are fully excited and in 'a state of 
local equilibrium, that the gas can be represented in conventional fashion by 
means of a system of harmonic oscillators, and furthermore that only a small 
fraction of the oscillators is excited. Under these circumstances the rate equa- 
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tion governing the flow is linear (Shuler 1959) and can be written (Johannesen 

(2.1) 
196 1) 

where (T' is the vibrational energy and Z'(T') its total equilibrium value corre- 
sponding to the transitional temperature T', p' is the density, v' is the velocity, 
x' is the distance along the nozzle axis measured from some suitable datum 
point, and Q'(T') is termed the relaxation frequency. The assumption that onIy 
a small fraction of the oscillators is excited implies that the translational tempera- 
ture is much less than the characteristic temperature of vibration. Under this 
assumption it thus follows that to a first approximation the rate equation is 
uncoupled from the remaining flow equations since 

v ' (dd/dx ' )  = p'Q'(T') (F'(T') - d), 

CT = d/RTh < 1 

and hence the energy equation, to a first approximation, is independent of c. 
Here TA is the translational temperature at the initial equilibrium station and 
R is the usual gas constant. The initial equilibrium station may coincide with 
upstream stagnation conditions in a convergent-divergent nozzle, or it may 
represent the initial conditions in a uniform supersonic stream which then 
undergoes expansion through a divergent nozzle. 

In  this uncoupled case ( g  < 1) the flow variables v',p', etc., are known functions 
of x', given by the usual isentropic solution for the quasi-one-dimensional flow 
of an ideal gas, provided the nozzle area distribution is specified (Blythe 1963). 
Consequently, in this case, equation (2.1) can be rewritten in dimensionless 
form as 

(2.2) 

(2.3) 

do-ldx = AFI(x) [F(x )  - g], 

1 where CT = d/RTh, F = F'/RTh, 

4 ( x )  = p(x)  w4/v(x ) ,  A = ZPh Qw, 
p = p'/ph, SZ = s2'/Qh, v = v'/a;, x = x'/l. 

Here I is some suitable nozzle dimension, a' is the frozen speed of sound, and the 
suffix 0 denotes the value a t  the initial equilibrium station. A is a dimensionless 
rate parameter and represents the ratio of the flow time scale to the time scale 
of the relaxation process. 

For a system of harmonic oscillators the equilibrium vibrational energy is 

(2.4) CT' = R@h/(exp (@:IT') - l),  

where 0; is the characteristic temperature of vibration. A dimensionless charac- 
teristic temperature of vibration is defined by 0, = O;/TA and the basic assump- 
tion that only a small fraction of the oscillators is excited implies that 0, B 1. 
Hence, from (2.4) 

given by - 

(2.5) 
- 

= 0, exp ( - 0,/T) [ 1 + O(exp ( - @JT))] ,  

where T = T'/Th and T 6 1. The exponential form of this function is of funda- 
mental importance in the analysis and accordingly a new independent variable, 
defined by 

x = [T(x)]-', 
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is chosen. Note that x > 1.  In  .terms of this variable the rate equation (2.2) 
becomes 

(2.7) d p / d z  = AF(x) [??(z) - a], 

where 

and I - 4 x 1  = 0,exp ( - 0,,x). 
(2.8) 

Here y is the ratio of the specific heats neglecting vibration, i.e. the specific 
heat ratio corresponding to the basic isentropic flow: y = 3 for a diatomic gas. 
The known isentropic solution (see, e.g. Shapiro 1953) has been used to express 
the density and velocity as functions of x .  Exponentially smaller terms have been 
omitted in the expression for 3. 

In  place of t~ a more meaningful dependent variable is the relative departure 
from equilibrium, s, which is defined by 

s = (a-5)/3. 12.9) 

Substitution into equation (2.7) gives 

(2.10) 

The first term in a conventional near-equilibrium solution (expansion in inverse 
powers of A) is given by balancing the term AF(x)s on the left-hand side of 
equation (2.10) with the expression on the right-hand side. This pertuhation 
scheme will apparently break down in the neighbourhood of 

M ( Z )  + 5-1 d??/dz = 0. (2.1 1 a )  

(The approach may also break down near z = 1, where the flow is in equilibrium, 
since s = 0 there but ds/dx may be finite, see $2.3.) The zero of this equation is 
termed the freezing point since it is characteristic of the region where s becomes 
large, that is, where the energy distribution breaks away from the equilibrium 
distribution. In  fact, because of the exponential form of 5, equation (2.11a) 

AP(z)  = 0,. (2.11 b )  simplifies to 

The solution of this equation is written as x = @ and a further independent vari- 
able is defined by t = x / @ .  Using equation (2.8) andrearranging equation (2.10), 
that is scaling with respect to the values at the freezing point, gives 

(2.12) 

(2.13) 

and G ( t )  = P(Z)/F(@). (2.14) 

The simplicity in form of equation (2.12) is worthy of note. Although the corre- 
sponding equation derived in Blythe (1963), using the Mach number as the 
basic independent variable, is similar in structure it is more complex in detail 
and the advantage of using T-l as the basic independent variable is obvious. 
In  what follows it is assumed that N is a large parameter. This is consistent with 
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the basic assumption that 0, 9 1 and requires that Q, is at  least O( 1) : if Q, < 1 
then i t  is to be expected that near-frozen conditions will hold everywhere since 
there will be no solution of (2.11 b )  which lies in the nozzle where z 2 1. 

At this stage some comment on the function G(() seems desirable. There is 
considerable uncertainty as to what is the correct temperature dependence of 
Q(T). In  general it would appear that Q may contain a dependence on 0, (see, 
e.g., the Landau-Teller theory or the more complex quantum-mechanical 
calculations of Herzfeld et al.; a survey of these theories is given in Herzfeld 
& Litovitz 1959). Hence, strictly G = G ( ( , N )  and consequently the solution 
presented below for G = G([), although mathematically valid, is subject to the 
physical limitation that it implies the relaxation frequency to be independent 
of the characteristic temperature of vibration. Nevertheless, it is felt worth while 
to examine the solution of equation (2 .12)  since this equation is the simplest 
possible case of the type under consideration. The method of approach is easily 
adapted to cases where G = G(( ,  N ) .  

2.2. Formal solution 

The full solution of equation (2.12) satisfying the boundary condition s = 0 
on [ = to = 0-l can be written 

s = -vexP(Nr?l(S)}S*"XP{-Nr?l(gl.)}d~, t c  (2.15) 

where r ( 0  =/*I1 1 -G(gl.Wgl.. 

The implications of this solution have been considered elsewhere (Blythe 
1963). It is sufficient to say here that the integral occurring in (2.15) is of the 
steepest descents type (Jeffreys & Jeffreys 1946, p. 472) with a dominant con- 
tribution from the region near ( =  1. It can be shown that equation (2.15) 
reduces to the usual near-equilibrium solution upstream of the freezing point. 
Near ( = 1 the integral grows as an error function, i.e. 

N i  d exp { - &NG'( 1) (( - 1)2} 
( - 2G'( l))* 

S N  [I+ erf(fl&( - +G' ( I))$ (( - I)}], (2.16) 

where the prime denotes differentiation with respect to 5. Furthermore, it  can 
be seen that asymptotically far downstream of the freezing point 

or 

where 

(2.17) 

(2.18) 

and the suffix f denotes the value at the freezing point. Evaluating the integral 
by the method of steepest descents gives 
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In  the subsequent analysis the solution of equation (2.12) will be obtained 
from an alternative approach. The perturbation solution, valid for 6 < 1, of 
equation (2.12) will be presented, including any necessary modification near 
x = 1. It will be shown that this solution is the correct upstream limit for a 
solution in the neighbourhood of the freezing point and a matching procedure is 
developed. The asymptotic solution downstream of the freezing point is then 
derived. The arbitrary constant in this solution is found by matching the solution, 
as 5 -+ 1, to the downstream edge of the transition layer solution which holds in 
the neighbourhood of the freezing point. 

Whilst the various solutions in the different regions can be derived quite 
easily from (2.15) the analysis presented below is of interest since it shows 
clearly, for an elementary case, why the near equilibrium solution breaks down, 
how the rapid transition from the equilibrium solution occurs, and emphasizes 
that it is not correct to match the asymptotic solution directly to the equilibrium 
solution. Moreover, this analysis forms a very useful introduction to the similar 
approach used in § 3 for the non-linear rate equation governing dissociation for 
which the full solution cannot be written down. The existence of the exact 
solution (2.15) also enables the validity of the matching techniques to be 
assessed. 

2.3. Perturbation solution 

Upstream of the freezing point a solution of the form 

= Eo(c)+AT-lEl([)+... (2.20) 

is sought. It follows from equation (2.12) that 

E, = [G( t )  - I]-,, 
E, = GW [ ~ ( t )  - 11-3, 

(2.21) 

and so on. Such a solution will need modification near 5 = Eo, where s = 0, when 
G(5,) is finite. The region near t = lo must then be considered separately (Bloom 
& Ting 1960) and an appropriate independent variable is 

1' = iv(<-to). (2.22) 
Equation (2.12) can be written 

ds/dv + [Go - 1 + viV-'G; + . . . ] s = 1, (2.23) 

where Go = G(to), GA = (dG/d5)C=Co, etc. 
A solution of (2.23) of the form 

s = co(v)+iV-lc,(v)+... (2.24) 

is sought, and it is found that 

I c0 = (Go - l)-l[ 1 - exp { - (Go - 1 ) v>], 

(2.25) 
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using the boundary conditions & = 0 on v = 0. By considering the limiting 
behaviour of (2.21) as &+to and the limiting behaviour of (2.25) as v-fco 
it  is readily seen that the solutions represented by equations (2.20) and (2.24) 
do indeed match a t  the downstream edge of this ‘boundary-layer’ region near 
t = 6,. For the case when G(l,) is not finite, i.e. when G ( t )  N l ? ( [ - t , ) - n  as 
5 + to, it  can be shown that (2.21) is a valid solution up to and including t = 6,. 

It is apparent from equation (2.21) that the perturbation solution breaks 
down as t + 1 where G(t) - 1 + (t - 1) G’(1) + . . . . In  general the perturbation 
solution is only a valid solution for 1 > 5 > 6,. Note that this solution although 
i t  corresponds to the usual near-equilibrium solution (expansion in inverse 
powers of A) only completely reduces to that solution where G(t)  9 1. It can 
be shown from the exact solution (2.15), by integration by parts, that (2.20) 
and (2.21) do indeed represent a valid solution in the region 1 > t > to, and also 
that equations (2.24) and (2.25) represent a valid solution where N ( t - [ , )  is 

2.4. Trans i t ion  layer solution 
O(1)- 

As -+ 1 the perturbation solution breaks down since the derivative term 
becomes important in this region. Near t =  1 the appropriate independent 
variable is u = N q t -  l),  (3.26) 

and equation (2.12) can be written 

X, = B, exp { - &a’( I)  u2) + ~ 

( - 2G’( l))* 

__ S, = (B, - 4BOu3) exp { - $G’( 1)  u2} - 2 
G”( 1) 

n4u3 exp { - +a’( 1) u2} __~  
3 ( - 2G’( 1))* 

1 U2 

-+ du UG’( l )+-G’’ ( l )+  ... s = Ng. [ 2N* 

) (2.30) 

(2.27) 

The solution to this equation is assumed to have the form 

and it follows that 
s = N*XO(U) + S,(u) + . . . (2.28) 

(2.29) 
dS,/dU+G’(l)uS, = 1, 

dS,/du + G’( 1)  US, = - *u2G”( 1) X,, etc. 

Note that G’( 1)  < 0. The solutions to equations (2.29) can be written 

As u + -a, i.e. as the upstream edge of the transition layer is approached, it 
is seen that 

1 1  1 1  

G’(1) u [C, (1)]zu3 
So N B, exp { - *a‘( 1) u2] + ~ - f y - f . . . ,  

(2.31) 

__ S, N (Bl- QB0u3)exp{ - &G’( 1)  u2}- 7- - ___ -- ...,I 2 1 

G”( 1)  [G (1112 [ ~ ’ ( 1 ) 1 3 ~ 2  
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but from the perturbation solution it follows that, as 5 -+ 1, 

1 1  

Promequations (2.28) and (2.31) it  is seen that the transition layer solution 
matches with the perturbation solution a t  the upstream edge of the transition 
layer provided the Bi = 0. Consequently the solution within the layer can be 
written 

where (2.34) 

It can be seen that the first term in (2.33) is in complete agreement with (2.16) 
which was derived from the full solution (2.15). It is easily shown that the higher- 
order terms also agree with the appropriate expansion of the exact solution. 

It is useful to consider here the behaviour of s as the downstream edge of the 
transition layer is approached, i.e. as u 4 +a. From (2.34) it  follows that 

(2.35) 

as u .+ co. In  terms of the 5 co-ordinate it is seen that L(u) becomes exponentially 
large with respect to N (since G'(1) < 0) and hence from equation (2.34) s also 
becomes exponentially large. 

2.5. Asymptotic solution 

The asymptotic solution downstream of the freezing point can perhaps be most 
easily derived by considering the rate equation with g/ir, as the dependent 
variable; the suffix f denotes the value at the freezing point. It follows from 
equations (2.7),  (2.13) and (2.14) that 

d A / d c  = N G ( [ )  [ A  - A ] ,  (2.36) 

where A = g/3f, B = = expN(1- g). (2.37) 

Downstream of the freezing point, G(5) -+ 0, 2 becomes exponentially small, 
and (2.36) reduces to 

d A / d g  = -NG(<)A. (2.38) 

In  general the error term in (2.38) is expected to be exponentially small and 
one might expect that a formal solution of (2.36) for 5 > 1 could be written 

A = A , ( g , N ) + 2 A , ( 5 , N ) +  ..., (2.39) 

where the equations for the Ai are obtained by equating like powers of A. 
However, the exponential form of 2 is an approximation to the full expression 
(2.4) and it follows that for i 2 1 one should strictly take into account the higher- 
order terms in A (though the solution (2.39) would be perfectly valid for the 
assumed exponential form of 2). Furthermore, the inclusion of the perturbation 
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to the flow variables would also affect the Ai’s for i 2 1. The equation satisfied 
by A ,  (i.e. (2.38)) is not affected by the higher-order terms in nor by the per- 
turbation to the flow variables, and it follows that a first approximation to the 
asymptotic solution is given by 

A ,  = K exp [ - Nl1‘G($) d$). (2.40) 

The terms neglected are exponentially small for > 1 and in fact as 6 -+ 00 

these terms approach zero. Thus it is expected that (2.40) will give the correct 
value for the asymptotic frozen level of the vibrational energy. The solution 
(2.40) can also be deduced by assuming that s is exponentially large for 8 > 1.  
Neglecting terms which are exponentially small compared to s in equation (2.12) 
gives, as a first approximation to s in this region, 

ds/dg+ N[G(C) - 11 s = 0. (2.41) 

s = K’exp N [l-G($)]d$]. (2.42) Hence 

Since s+ 1 = exp {N(C- 1)}A, it follows, neglecting exponentially small terms, 
that the arbitrary constants in (2.40) and (2.42) are the same. 

1 J: 
As 5 -+ 1, equation (2.42) gives 

G”( 1)  u3 +...I 
s N K’exp{-frG’(1)u2} 1-- [ 6N4 

(2.43) 

(writing u = N & ( t -  1)). From equations (2.33), (2.34) and (2.35) the behaviour 
at the downstream edge of the transition layer is seen to be given by 

s N ( - 2n/G’( 1))* exp { - frG’( 1) uz} [Ng - $a”( 1) u3 + O(N-*)] ,  (2.44) 

where only the exponentially large terms have been retained. Comparison of 
(2.43) and (2.44) shows that the solutions match provided 

(2.45) 

Higher-order terms in K’ can be computed by obtaining S,, S,, etc., in the tran- 
sition-layer solution. Note that it is not necessary to compute the Ai for i > 1 
in order to do this, though the terms which are exponentially smaller must of 
course still match. The asymptotic solution given by (2.42) and (2.45) is seen to 
be in agreement with the expression (2.19) derived from the exact solution (2.15). 

K’ = ( - 277/G’( 1))& N &  + O(N-4). 

It follows that the asymptotic value of r~ is given by 

Hence the asymptotic value of CT is not O(3f), which would be a consequence of 
the sudden-freeze approximation, i.e. the assumption that up to the freezing 
point the flow is in equilibrium while beyond it the flow is frozen with G remaining 
constant a t  its value a t  the freezing point. The sudden-freeze and other approxi- 
mations for the asymptotic solution will be discussed in 8 4. 
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2.6. Summary of solutions 

In  order to assist the reader a list of the independent and dependent variables 
which are appropriate to the various regions is given in table 1. 

Independent, Dependent 
Region variable variable 

Initial ‘ boundary-layer ’ v = N(6-60)  s = go+N-’g,+ ... 
region 

Perturbation solution 6 s = E,+N-’E,+ ... 

Transition layer u = N * ( [ - l )  s = N*So+S,+ ... 

Asymptotic solution 6 s is exponentially 

1 > 6 > 6 0  

solution 6 N 1 

large 

TABLE 1. Breakdown of solutions: linear rate equation 

Solution 
(equation 

no.) 
(2.25) 

(2.21) 

(2.33) 

(2.42), 
(2.45) 

3. Non-equilibrium dissociation and ionization 

Because of the linear form of the rate equation the analysis of $ 2  was compara- 
tively straightforward. However, for dissociation or ionization the rate equation is 
non-linear, even when there is only a small amount of energy in the lagging mode. 
This non-linear behaviour is particularly important with regard to the structure 
of the asymptotic solution. 

Molecular dissociation of a diatomic gas will be considered first. In  order to 
simplify the problem as much as possible i t  is assumed that the translational 
and rotational modes are fully excited and that the translational, rotational and 
vibrational modes are in a state of local equilibrium throughout the flow. The 
effects of electronic excitation, etc., are assumed to be negligible. The assumption 
that the vibrational mode is in equilibrium implies that the vibrational relaxation 
time is much less than that for dissociation, a condition which can only be ex- 
pected to hold over a limited temperature range (see e.g. Heims 1958). 

Freeman (1958) has derived a suitable rate equation for molecular dissociation 
under these conditions. This equation can be written in the form 

3.1. Transformation of the rate equation 

where a, = a,(p’, T’) is given by 

a,“/( 1 - a,) = p&/p‘ exp ( - DL/LT’). (3.2) 
Here a is the dissociation fraction (ratio by mass of the dissociated atoms), a, 
is the local equilibrium value of a corresponding to the translational temperature 
T‘ and the density p’, p& is a characteristic ‘ density of dissociation ’ (see Lighthill 
1957), DL is the energy of dissociation and k is Boltzmann’s constant. C’(a, T’) 
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is termed a rate function. The precise dependence of C' upon a and T' is rather 
uncertain. Freeman (1958) suggested that the main variation will be some inverse 
power law dependence on temperature. At constant temperature, from the 
calculations of Wood (1956), one might expect that 

C' = ba+d(l-a) ,  

where b and d are of the same order of magnitude. Thus for a < 1, C' N d. Conse- 
quently for the present uncoupled case, where a < 1, the assumption 

C' = c, T'-r (3.3) 

should be valid. In  fact all that is strictly necessary for the present analysis to 
hold is that, to a first approximation for a < 1, 

C' = C'(T ' ) .  

The characteristic density ph is in general a function of temperature (Lighthill 
1957), though its variation with temperature is in many cases very slight. 

By suitably non-dimensionalizing the variables with respect to the equilibrium 
conditions (as in 9 2 )  and by utilizing the condition a 4 1 equation (3.1) becomes 

da/dx = AF1(x) [R ,~ (x )  - a2], (3.4) 

where 

and pD = p&/p&,, C ( T )  = C'(T')/CA(TA), and the other symbols are as previously 
defined in 32.  The functions Fl and a, are known functions of x from the basic 
isentropic solution, i.e. the solution when a = 0 and the flow remains in thermo- 
dynamic equilibrium. Using the assumption a, < 1 equation (3.2) can be 
written 

( 3 - 7 )  

where 0, = D,/kT; is a dimensionless characteristic temperature of dissociation. 
Actually the precise conditions under which the rate equation is uncoupled 

from the remaining flow equations is not a < 1 but alog a < 1, since the energy 
equation, in dimensionless form, contains a term @,a. This is to be compared 
with the energy equation for vibrational relaxation where the corresponding 
term is simply cr. Consequently, from (3.7), a necessary condition on 0, is 

Again it is the exponential form of a, that is a dominant feature of the analysis 
and it is convenient to use as independent variable 

z = [T(x)]-'. (3.9) 

The rate equation becomes, in terms of this variable, 

da,ldz = AF(z)  [ c x ~ ( z )  -a2],  (3.10) 

where (3.11) 

17 Fluid Mech. 20 
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Neglecting exponentially smaller terms, a, is expressed as 

a, = h(z) exp ( -  &O,z), (3.12) 

where h(z) = rPi l ,PD(~)/P; P(413. (3.13) 

The functions p(z), h(z), etc., are determined from the basic isentropic solution. 
If it  could be assumed that the translational, rotational and vibrational modes 
are all fully excited (or, e.g., that the ideal dissociating gas were a valid model) 
then this isentropic solution would be the usual constant y solution with the 
appropriate value of y. However, as z becomes large i t  is physically unrealistic 
to assume that the vibrational mode is fully excited and allowances have to be 
made for variations in y. 

An equation of the form (3.10) also governs the flow of a monatomic ionizing 
gas when a, now to be interpreted as the ionization fraction, is small (Rosner 
1962, Eschenroeder 1962) (again it is necessary to assume that alog a < 1). 
The equilibrium value of the ionization fraction has the usual exponential form 
with 0, replaced by a characteristic ionization temperature. Consequently the 
results obtained below for dissociation will also be applicable to ionization 
provided the necessary modifications are made to the functions F(z )  and h(z). 

Equation (3.10), as pointed out by Freeman (1959)) is a Ricatti equation and 
can be transformed to a second-order linear equation by means of a suitable 
substitution. However, it does not appear possible to write down a formal 
solution to this transformed equation and it is necessary to proceed as in $ 2  
and to obtain valid solutions within the various regions governing the flow. 
As before the appropriate dependent variable is 

= (a-a,)/a,, (3.14) 

and equation (3.10) is transformed into a further Ricatti equation 

dsldzi-  ( 2 R F a e + a ~ ' d a ~ / d ~ ) s + ~ a , s 2  = -a;'da,/dz. (3.15) 

The first term in the usual near equilibrium solution (expansion in inverse 
powers of A) is obtained by balancing the term 2RFa,s on the left-hand side 
of this equation with the expression on the right-hand side of this equation. 
Such a solution must break down near points where 

~ A F c z ,  + a, d@,/,ldz = 0. (3.16) 

Note that, as in $ 2 ,  this is the type of freezing criterion derived by Bray (1959) 
from qualitative arguments. Note also that if equation (3.10) were linearized 
by assuming small departures from equilibrium then the analysis of $ 2  would 
still predict a breakdown of this near equilibrium solution in the region where 
(3.16) is satisfied, since the P of $ 2  would be replaced here by 22701,. 

The solution of equation (3.16), for the position of what is termed the freezing 
point is written z = CD. A new independent variable is defined ,by 6 = x / @  and 
equation (3.15) can be rearranged to give 

N-'dsld,r+ [ H ( t ,  N )  - a t ,  Wls + W(5, N )  s2 = Q(5 ,  N ) ,  (3.17) 
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where N = (-ol;1da,/dt)5=l = QO,@-p, p = [(cE/d$)l~gh]~=,, (3.18) 

and Q(<, N)  = 1 + N-l [p - (d /d t )  logh]. (3.20) 
As in $2, i t  is again assumed that N is a large parameter. This is consistent 
with the requirement on 0, provided that @ is O(l) ,  since p is O(1): @ < 1 
indicates that near-frozen conditions can be expected to hold everywhere, 
see Q 2.1. Apart from the non-linear term the important feature of equation 
(3.18), in comparison with the linear equation (2.12), is the exponentiaI form of 
the function H(5, N) and the equation is somewhat dominated by the rapid 
exponential decay of this function. Note that Q(6, N) is O( 1) and that its deri- 
vatives are all O( l/N). 

3.2. Perturbation solution 
For < < 1 it is seen from equation (3.17) that s is O(exp [ -N(1-5)]). Write 

then from (3.17) 

Accordingly a solution of the form 

s = eexp{-N(l-t)}; 

c = Q ( t ,  N)/f(LJ +exponentially smaller terms. 

s = el exp { - N (  1 - t)} + e2 exp { - 2N(1- 6)) + . . . (3.21) 
is sought. This will be a valid form of solution provided the ei are o(exp [N( 1 - 01) .  
It is found that 

Note that the ei's are all O( 1) for large N. It is correct to retain the dependence 
of the ei's on N since the (i + 1)th term will be exponentially smaller than the 
ith. However, although, in relation to equation (3.17), these higher-order terms 
can be computed, in reality they are of little significance beyond the first term 
since the terms neglected in deriving (3.17) are of a similar order of magnitude 
to these higher-order terms. Note that el is equivalent to the first term in a 
conventional near-equilibrium solution. 

This perturbation solution, as in $2, will need modification near t = to, 
where the boundary condition s = 0 has to be satisfied, if H(C,N) remains 
finite there (Bloom & Ting 1960). This region near 5 = go, where the term involving 
the derivative in equation (3.17) is expected to be important, is 

O W 1  exp { - N(1- t o ) } )  

in extent, and a new independent variable is defined by 
w = Nexp{N(1-to)}(t-50), (3.23) 

and equation (3.17) becomes, near t = to) 
ds/dw + [fo - {(fo -N-YA) OJ + Qo} ~ X P  { - N(1- 60)) + OfexP - 2N(1- to)))] 

+ 8[fo - (fo - N-lfA) OJ exp { - N( 1 - t o ) }  + O(exp { - 2" 1 - t O ) } ) l  s2 
= Qo exp { - N (  1 - to)} + O(exp { - 2N( 1 - to)>). (3.24) 

17-3 
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A solution of the form 
s = exp{-N(1-~o)}Zl(w,N)+exp{-2N(1-[o)}Z,(w,N)+ ... (3.25) 

is sought; it  is assumed that the Zi are o(exp { N (  1 - to)}). It follows from equa- 
tions (3.24) and (3.25) that 

dZl/dw + foZl = Q0, etc. 

2 1  = (Qoifo)  [1 - exp ( - foW)l ,  

(3.26) 

The solution of this equation satisfying the boundary condition 8, = 0 on 

(3.27) 
UI = 0 is 

which as w - f m  matches with the first term of the perturbation solution as 
6 + t o .  Higher-order terms can also be shown to match and, as in the linear 
case, the perturbation solution forms a valid outer limit of the solution near 
[ = E0. Whenf([) N p([ - to)-% near 6 = E0 it again follows that the perturbation 
solution is valid up to and including 6 = to. 

3.3. Transition layer solution 

As 6 + 1 the coefficient of s in equation (3.17) approaches zero and it is apparent 
that sufficiently near to t =  1 the perturbation solution must break down. 
Near 6 = 1 it  is appropriate to use the independent variable 

Y = N ( t -  117 (3.28) 

and equation (3.17) can be rewritten, near [ = 1, 

ds/dy + [ i f (  1) + N-lyf’( 1) + . . .} e-1/ - (1 + O(N-2)}]  s 

+ i ( f (  1) + N-lyf’( 1) + . . .} e-Ys2 = 1 + O(N-2) .  (3.29) 

Note that near 6 = 1, Q = 1 + O(N-2) .  A formal solution of this equation can 
be expressed in the form 

s = r  do(y)+N-lC,(y)+ ..., (3.30) 

and the equations satisfied by Xo and X, are 
dCo/dy + [e-” - 11 C, + 4 e-Y 2; = 1, (3.31) 

dCl/dy + [e-” - 1 + e-1/ XO] 2, = -y( 1) ye+ Co( 1 + &Xo). (3.32) 

The equations for the higher-order terms are similar in form to (3.32)) though with 
a more complex right-hand side. The simplicity of the right-hand side of equation 
(3.32) arises from the fact that within the transition layer 

Q = 1+O(N-2). 

To solve equation (3.31) one notes that it is a Ricatti equation, simpler in form 
than (3.17), and the solution is most easily obtained by transforming to an 
a,ppropriate second-order linear differential equation. It is convenient to change 
both the dependent and independent variables and the transformation is defined 
by 

and equation (3.31) becomes 
t = ge-v, X0+ 1 = -P-ldp/dt, 

t(d2pldt2) + dpp t  - tp = 0, 

(3.33) 

(3.34) 
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which is Bessel’s equation of zeroth order. The solutions are the zeroth-order 
Bessel functions (of imaginary argument) of the first and second kind, Zo(t) 
and Ko(t),  respectively. It follows from (3.33) that 

(3.35) 

where K ,  and Z, are the corresponding Bessel functions of the first order and 6, 
is some arbitrary constant. Note that I:, + 1 corresponds to CI/CI.,. 

The upstream edge of the transition layer is defined by y + - 00 ( t  -+ + a) and 
it should be possible to match the solution in this region to the downstream limit, 
as 6 -+ 1, of the perturbation solution. For t large it follows from the asymptotic 
expansions of the Bessel functions that 

I:,+ 1 = [R,(t) - ~ O ~ , ( ~ ) l / ~ ~ O f ~ f  + ~ O ~ O ( t ) I J  

e--2t [l + 3/8t + ...I-& 6, [l - 3/8t+. ..I 
e-21 [l - l /8t+ ...I + 48, [ 1 +  1/8t+ ...I ’ X o + l  N (3.36) 

However, from (3.21) and (3.22) as (+ 1 

s N e”(1-N-lf’(1) y + O ( N - 2 ) ) + e 2 ~ 0 ( 1 ) +  ..., (3.37) 

or since y = -log (2 t ) ,  equation (3.37) can be written 

s N &t-l(l+ N-lf‘(1) log 2t + O(N-’)} + tP0( 1)  + . . . . (3.38) 

By comparing the terms in t-1 which are O(1) in equations (3.36) and (3.38), 
it is seen that the expressions do match provided 6, = 0. It can also be shown that 
the terms in t-2, etc., match and hence the first approximation to the solution 
within the layer is given by 

In terms of the independent variable t equation (3.38) can be integrated to give 

?;,+ 1 = KI.(t)/K,(t). (3.39) 

T - 1 -  + f’o j log (2t)  (Ki(t)  - K?(t)) dt, 
- tZi’i(t) tK;(t) (3.40) 

where 6, is some arbitrary constant. In  order to evaluate this integral it  is 
convenient to make use of the result (Watson 1952, p. 135) 

J-m:Jt) dt = itZ[Ki(t) - K,-,(t) Kn+l(t)] 

= +t2[K:(t) - Ki+,(t)] + ntK,(t) X,+I.(t). (3.41) 

It then follows from equation (3.40) that 

By considering the behaviour of this expression for large t (y + - 00) it  is found 
that 

Using this expression and equation (3.30) and comparing with equation (3.38) 
shows that terms of O( l/N) match provided 6, = 0. Hence El is given by 

XI. N 6,e-Zt + $t-’f’( 1)  log 2t + O(t-21og 2 t ) .  (3.43) 

I:,=j’(l) - + t ( l o g 2 t - l )  1 [ 1--+-- W )  W)]]  . 
{2t K;(t)  tKo(t) (3.44) 
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3.4. Asymptotic solution 

The form of the asymptotic solution downstream of the freezing point is, as in 
Q 2, most easily seen by considering the original form of the rate equation using 
a/aef = A as the independent variable (aef denotes the value of a, a t  the freezing 
point). In  terms of A and .$ equation (3.10) becomes 

(3.45) 

where G(fJ = P(z)/P( a). The dominant feature of this equation is the rapid decay 
of the exponential term for .$ > 1 and a first approximation to this equation is, 

dA/d[  = - &NG(() A2. (3.46) 
for[ > 1, 

As in Q 2 a scheme for obtaining the higher-order terms in the asymptotic solution 
can be written down, but again it is expected that these terms, although mathe- 
matically derivable, will have little physical significance since they will be affected 
by the next approximation to the lagging energy distribution, i.e. by the inclu- 
sion of the effect of the perturbation to the flow variables, etc. The solution of 
equation (3.46) is certainly the first term in such an asymptotic solution, the 
higher-order terms being exponentially small. From equation (3.46) 

A (6, N )  = [. + iNfG(3) W ]  -’, (3.47) 

where D is an arbitrary constant. It follows, either from (3.47) and the definition 
of s or from equation (3.17) assuming s is exponentially large, that 

As [ --f 1, this equation becomes 

(3.48) 

(3.49) 

On the other hand from (3.39) as y --f +m, t + 0 (downstream edge of tran- 
sition layer) it is seen that ~. 

e”[ 1 + O(y e-2”)] zo+ 1 - ~- 
*y + log 2 + *F( 0 )  

(3.50) 

where F(r) denotes the digamma function. It is seen that the leading term of 
(3.50) matches with the leading term of (3.49), neglecting terms of 0(1/N) ,  if 

D = Do = l0g2+&F(O) x 0.4045. (3.51) 

Note that (3.50) indicates that the next term in the asymptotic solution is of the 
form Al([, N )  exp{ - 2N([- l)]. To obtain a better approximation to D it is 
necessary to consider the second approximation to the solution in the transition 
layer. Prom equation (3.42) it follows that for small t, i.e. y -+ +co, 
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From equation (3.49), writing D = Do + N-ID, + . . . , it is found that 

263 

Hence terms O(N-1) match, provided 

From equations (3.48), (3.51) and (3.52) it is seen that the asymptotic solution 

D, = -f'(l) [Di - Do + 31 N" - 0*2591f'( 1). (3.52) 

(3.53) 
is given by 0.2691f' (1) 

5 @+ef = [+NS'G([) 1 dg+ 0.4045 - N 

3.5. S u m m a r y  of solut ions 

In  order to assist the reader a list of the dependent and independent variables 
appropriate to each of the regions is given in table 2. 

Independent Dependent 
Region variable variable 

Initial ' boundary-layer ' ui = N(5  - to) eN(1-to) = e - ~ ( i - ~ o )  + . . . 
region 
E N E O  

Perturbation solution 
E < 1  

Transition layer solution g = "6-1) 8 = Xo+N-l X l +  ... 
E - 1  

Asymptotic solut,ion 
f ; > l  

TABLE 2. Brcakdown of solutions: non-linear rate equation 

Solution 
(equation 

no.) 
(3.27) 

(3.22) 

(3.39), 
(3.44) 

(3.47), 
(3.53) 

3.6. Numerical example 
As an example the above solutions have been evaluated for the case of the Light- 
hill ideal dissociating gas (Lighthill 1957). This model assumes that the vibra- 
tional mode is always half excited and leads to certain simplifications; in par- 
ticular the specific heat ratio y (for a = 0) is independent of temperature and has 
the value +. A more exact thermodynamic model, assuming that the vibrational 
energy had its local equilibrium value, could have been used. This model would 
give y = y (T) .  However, since the purpose of this example is to demonstrate the 
general behaviour of the solution, the Lighthill model is satisfactory. 

For the example considered it was assumed that C = T+ with T = 2.5 (Free- 
man 1958, p. 411), OD = 10 and pD(z) = 1 (Lighthill ideal dissociating gas). 
The nozzle geometry was taken to be hyperbolic, i.e. the area ratio = 1 +x2. 
Under these conditions the function F(z )  and h(z) are given by 
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where m = (2/(y+ 1 ) ) ( ~ + ~ ) / ~ ( ~ - 1 )  is the dimensionless mass flow rate defined by 
m = plvl, where the suffix t denotes conditions at the throat. The functions f(<), 
Q(<, N ) ,  etc., follow immediately from equatiods (3.18), (3.19) and (3.20). 

/:G($) d$ was evaluated over a range of 6 for various Q. 

_. 
I 
I 
Equilibrium solution 
Perturbation solution 

-. Transition layer solutio 
-__ - -  Asymptotic solution 

--- 

OD= lo  
r = 2.5 

@ = 5  

Asymptc 

1 *o 1.1 

6 
FIGURE 4. Dissociating flow through a hyperbolic nozzle. 

The solutions corresponding to the different flow regimes are plotted in 
figure 4 for cD = 5. Only the first term of the perturbation solution, the first 
two terms of the transition layer solution, and the first three terms of the asymp- 
totic solution were used. Upstream stagnation conditions are specified by 
< = 0.2. It can be seen from figure 4 that there is no significant departure from 
the equilibrium solution until 6 > 0.85, or from the perturbation solution until 
5 > 0.9. The asymptotic solution, in this case is apparently valid for [ > 1.1. 
The behaviour of the solutions in the vicinity of the freezing point is shown in 
figure 5.  In  figure 6, both the one-term and the two-term solutions applicable to 
the transition layer region are shown. The first, second, and third approximations 
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6 
FIGURE 5. Solutions near t h e  freezing point. 

- - - First approximation 
- Second approximation 

@,=I0 
r = 2.5 

365 

5 
FIGURE 6 .  Transition layer solution. 
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5 
FIGURE 7. Asymptotic solution. 

a) 
FIGURE 8. Asymptotic levels of the dissociation fraction. 



Non-equilibrium nozzle $ow 267 

to the asymptotic solution are shown in figure 7. It would appear that in this 
case the series representing the’asymptotic solution converges fairly rapidly. 

10 11-877 0.405 
5 5.580 0.405 
2.5 2.347 0.405 
1.5 0.921 0-405 
1.2 0.420 0.405 

TABLE 3. Asymptotic values 

- Dl 
iv 

0.016 
0.035 
0.086 
0.240 
0.651 

0.1 1.00 f 1 

5 
FIGURE 9. Rate parameter as a function of @. 

Considerable interest is attached to the asymptotic levels of the dissociation 
fraction and these are shown in figure 8 as a function of @. As @-+ 1 the series 
representing the asymptotic solution breaks down, i.e. the series no longer 
converges since as @ -+ 1, f’(1) -+ 03 (f’(1) - - 2/(@- 1) as @ 3 1). In  table 3 
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numerical values of the first three terms in the asymptotic solution are given for 
various 0. It is apparent that the approach is of little use for freezing points 
lying upstream of the nozzle throat (@ < i ( y +  1)). 

That this method of approach should break down as @ -+ 1 is not surprising 
since under this condition the flow corresponds to a near frozen flow. In  figure 9, 
a plot of Rae,, which is the appropriate rate parameter (see equation (3.4)), 
against 0 is shown. Aaeo small is the condition under which a near frozen 
solution can be expected to  hold. 

4. ResumC and discussion of previous work 
Perhaps the most important feature of the theory presented above is the deriva- 

tion of the correct asymptotic solution, subject to the limitation of only a small 
amount of energy in the lagging mode. Much has been written on the final, or 
frozen-out, value of the energy in the lagging mode and i t  is appropriate here t o  
turn to the work of Bray (1959). Bray presented numerical solutions for the quasi- 
one-dimensional flow of an ideal dissociating gas, subject to a rate equation of 
the type (3.1)) and also described an approximate method for deducing the asymp- 
totic frozen value of a. In  Bray’s work, a was not small compared with unity and 
the rate equation could not be regarded as uncoupled from the remaining flow 
equations. Here, however, this approximate approach will be considered in the 
uncoupled limit. By means of a suitable qualitative argument Bray deduced 
that freezing would become important where (in the present notation) 

daeldz N -hF~i ,  
dae/dz = - PATa:, (4.1) 

P being a constant of O( 1) .  This criterion is equivalent to the present definition 
of the freezing point when P = 2 (equation (3,16)). However, Bray assumed that 
(4.1), as well as indicating where freezing would set in, also gave the asymptotic 
frozen value of a: that is he assumed that upstream of the freezing point a was 
given by the equilibrium distribution, while downstream of the freezing point a 
remained constant a t  its equilibrium value a t  the freezing point-the so-called 
sudden-freeze approximation. A similar approach to Bray’s involving a slight 
modification in P, was also given by Hall & Russo (1959). These sudden-freeze 
approximations seemed to give reasonable agreement with the exact numerical 
results. 

The solution of equation (4.1) can be written 
tp  = 1 + N - ~ ~ ~ ~ ~ P + N - ~ ’ ( ~ ) ~ ~ ~ ~ P + o ( N - ~ ) .  (4.2) 

It follows that ae,/a,f = P / P )  [ I +  O(N-l)ll (4.3) 

where the suffix P denotes the value of a, a t  the point cp.  It is apparent from 
equation (3.53) that the sudden-freeze approximation, i.e. a is O(aep), is incorrect 
for P of O( 1) .  In  fact it  is necessary that P is O ( N )  if aep is to give the correct 
asymptotic value. Note that this result is only true for a < 1; nothing can be 
said on the order of magnitude of the asymptotic value for general values of a. 

For the linear rate equation, the solution of the corresponding criterion, 

(4.4) written in the form PAF(z) + ??-l(d??/dz) = 0 
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where Pis O(1) (P = 1 for the present definition of the freezing point, see equation 
(2.1 1 a)),  is given by the solution of 

PG(tP) = 1. (4.5) 

Also P l f  = exp (NP - [ P ) }  (4.6) 

and it follows from equation (3.19) that in order to obtain the correct asymptotic 
limit Prn 

(4.7) 

which indirectly specifies P from equation (4.5). Note that in order to use such a 
criterion it is necessary to have P = P ( N ) ,  i.e. any P of O(1) is not sufficient. 
Omission of the terms of O(N-llogN) and O(N-l )  leads to significant errors, 
from a mathematical point of view, in the asymptotic value. Note that for this 
linear case the asymptotic frozen value is much more sensitive to the value of 
P than in the non-linear case. Again these conclusions are valid only when 
c r <  1. 

Rosner (1962) (see also Smith 1958) recognized that the asymptotic form of 
the rate equation was given by neglecting the equilibrium term and that a more 
correct asymptotic solution would be obtained by integrating the resultant 
equation (i.e. equation (3.46)). Since Rosner considered the uncoupled problem 
for a monatomic ionizing gas his results are of direct interest here. As well as 
obtaining a numerical solution to an equation of the type (3.10) Rosner pre- 
sented an approximate analytical solution for the distribution of a. To obtain 
this latter solution he considered the form of the rate equation when ae < a, 
i.e. equation (3.46), and integrated this equation to give a result equivalent to 
equation (3.47). Rosner then assumed that the arbitrary constant, as yet un- 
determined in his asymptotic solution, could be derived by matching a and its 
derivative to the equilibrium solution at some point. It follows that this match 
point is defined by 

which is not the point associated with the singular behaviour of equation 
(3.15) though equation (4.8) is similar in form to (3.16). Moreover, it  is obvious 
that this approach does not formally take into account the behaviour within 
the transition layer. If one obtains an asymptotic solution in this way it trans- 

daeldz = - AF(z)  (4.8) 

pires that 

where the suffix R denotes the value a t  Rosner's match point, which is given by 
equation (4.8). Equation (4.8) is equivalent to (4.1) with P = 1, and it follows 
from equation (4.2) that 

[ E  = 1 - N-llog 2 - AT--2f'( 1) log 2 + Q(N-'), (4.10) 

and hence, from equation (4.9), 
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noting that f'( 1)  = G'( 1) + O(N-l). Comparison with equation (3.53) shows that 
the first term of this solution is correct but that the higher-order terms are not. 
It follows that Rosner's approach is a better approximation than the sudden- 
freeze approach. The above result also implies that the error in the sudden- 
freeze approximation lies not so much in matching directly to the equilibrium 
solution but in failing to take account of the correct asymptotic form of the rate 
equation. The effect of the transition layer determines the second and higher- 
order terms in the asymptotic solution. 

Rosner also obtained an exact numerical solution of the full equation for a 
specific case and he compared both the sudden-freeze result and (effectively) 
the expression (4.9), as ( + co, with the exact asymptotic value. He concluded, 
as might be expected, that his solution gave closer agreement with the exact 
numerical solution than did the sudden-freeze approach. On the other hand the 
value given by the sudden-freeze assumption was still apparently of the same 
order of magnitude as the exact asymptotic solution, even though in this par- 
ticular case N % 11. It soon becomes apparent that for this case the series of 
equation (3.53) converges only slowly. The convergence of the asymptotic 
solution is governed, apart from the magnitude of N ,  by the function G(() 
and the derivatives f'(l), f"(l), etc. In  many cases the derivatives f'(l), etc., 
are large and from the asymptotic series it would appear that the relevant 
parameter governing convergence is N/"( 1). Consequently in some cases the 
asymptotic series will converge only slowly. In  particular as 

CD --f 1, f'(1) - -2/(CD- l), etc., 

and the relevant parameter governing convergence is N ( @  - 1). As noted in 
$3.6 for (CD - 1) sufficiently small the asymptotic series no longer converges. 

A similar approach to Rosner's applied to the linear rate equation is also mathe- 
matically incorrect for this uncoupled case. For the linear rate equation of § 2, 
the asymptotic value of cr/Ff is 

while Rosner's approach gives u/i7f to be 

Note that in this case the approach does not give a good first approximation to 
the asymptotic value. Again, as was found for the non-linear rate equation, the 
convergence of the asymptotic series is slow in many cases. 

Eschenroeder (1962) also considered the flow of an ionizing gas. He too 
noted that the asymptotic solution was given by neglecting the equilibrium 
term in the rate equation and integrating the subsequent equation. However, he 
assumed that the function Fl(x) (equation (3.4)) was given by its asymptotic 
representation for large x, which is equivalent to assuming that G(() can be 
represented by its asymptotic form for large z and a. A necessary condition for 
such an assumption to be valid is that CD % 1. Eschenroeder examined two cases: 
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(i) where P.(x) dx was finite for all x ,  and (ii) where the integral was not bounded. 

For the first case he still assumed that the asymptotic solution could be repre- 
sented by a = constant, that is, he neglected the variation with x as a approached 
its asymptotic limit, and he matched this solution to the equilibrium solution at  
the point defined by equation (3.16). Thus for case (i) Eschenroeder’s approach 
was equivalent to the sudden-freeze approximation. In  case (ii) Eschenroeder 
did include the asymptotic variation with x ,  since in this case a + 0 asymp- 
totically, (though it does not follow the equilibrium distribution for large x) .  As 
before he matched this solution to the equilibrium solution at the freezing point 
defined by equation (3.16). For 0 9 1 it follows that for this latter case the 
approach is equivalent to Rosner’s but with an error term of O(N-lO-1) instead 
of O(N-2). However, for general values of 0 the approach does not give the 
first term of the asymptotic solution correctly, since Pl(x) and hence G(f;) could 
not then be represented by its asymptotic expansion for all f ;  2 1. 

More recently Stollery & Park (1963) have derived a further freezing criterion 
which they specifically applied to a linear rate equation. The criterion is empirical 
in structure. Stollery & Park observed that in their numerical calculations the 
(dimensionless) relaxation length defined by conditions in the equilibrium flow a t  
the point where the equilibrium energy equalled the asymptotic non-equilibrium 
frozenvalue (thisisnot in general the same freezing point as Bray’s) appeared to be 
independent of the (dimensionless) rate parameter, i.e. for the rate equation of 5 2, 

S“ 

NG(.&) (df;/dx)5st = const. (independent of N ) ,  (4.12) 

where tst defines the value off; at the freezing point as given by Stollery & Park. 
Since Cst is defined by = ~ ( o o ) ,  where IT(OO) denotes the asymptotic value of 
cr, it  follows that tst is given by equation (4.7). Substitution of this expression 
in the left-hand side of equation (4.12) does not, in general, give an expression 
which is independent of N .  

In  conclusion it can be stated that none of the approximate methods of 
determining the asymptotic value of the energy in the lagging mode are mathe- 
matically correct in the limit when the energy is small compared with the total 
enthalpy (though Rosner’s approach as applied to the non-linear rate equation 
(3.4) is a valid first approximation). However, no conclusions can be given 
concerning the validity of these approximate methods for arbitrary values of 
a, cr. Comparison with exact numerical calculations when a and IT are O(1) 
would seem to indicate that the approximate methods may have some limited 
region of validity. 

The author is indebted to Dr N. C. Freeman for several very helpful discussions. 
He would also like to thank Miss H. V. Stephenson and Mr S. F. J. Cox for their 
assistance with the numerical computations for the example of $3.6. 

This paper is published by permission of the Director, National Physical 
Laboratory. 



2 72 P. A .  Blythe 

R E F E R E N C E S  
BLOOM, M. H. & TING, L. 1960 On near-equilibrium and near-frozen behavioiir of one- 

BLYTHE, P. A. 1963 Non-equilibrium flow through a nozzle. J .  Pluid Mech. 17, 126. 
BRAY, K. N. C. 1959 Atomic recombination in a hypersonic wind tunnel nozzle. J .  Fluid 

Mech. 6, 1. 
BRAY, K. N. C. & WILSON, J. A. 1961 A preliminary study of ionic recombination of 

argon in wind tunnel nozzles, Part 11. A.R.C. 23290-Hyp. 145a. 
ESCHENROEDER, A. Q .  1962 Ionization non-equilibrium in expanding flows. A.R.S. 

Journal, 32, 196. 
FREEMAN, N. C. 1958 Non-equilibrium flow of an ideal dissociating gas. J .  Fluid Mech. 

4, 407. 
FREEMAN, N. C. 1959 Non-equilibrium theory of an ideal dissociating gas through a 

conical nozzle. A.R.C. C.P. 438. 
HALL, J. G. & Russo, A. L. 1959 Studies of chemical non-equilibrium in hypersonic 

nozzle flows. Cornell Aero. Lab. Rep. AD-1118-A-6, AFOSR TN 59-1090. 
HEIMS, S. P. 1958 Effects of oxygen recombination on one-dimensional flow at  high 

Mach numbers. N.A.C.A. TN 4144. 
HERZFELD, K. F. & LITOVITZ, T. A. 1959 Absorption and Dispersion of Ultrasonic Waves. 

New York: Academic Press. 
JEFFREYS, H. & JEFFREYS, B. 8. 1946 Methods of Mathematical Physics. Cambridge 

University Press. 
JOHANNESEN, N. H. 1961 Analysis of vibrational relaxation regions by means of tho 

Rayleigh line method. J .  Fluid Mech. 10, 25. 
LIGHTHILL, M. J. 1957 Dynamics of a dissociating gas. Part I. Equilibrium flow. J .  

Fluid Mech. 2, 1. 
ROSNER, D. E. 1962 Estimation of electrical conductivity a t  rocket nozzle exit sections. 

A.R.S. Journal, 32, 1602. 
SHAPIRO, A. H. 1953 The Dynamics and Thermodynamics of Compressible Fluid Flow. 

Ronald Press. 
SHULER, K. E. 1959 Relaxation processes in multistate systems. Phys. Fluids, 2, 442. 
SMITH, F. T. 1958 On the analysis of recombination reactions in an expanding gas stream. 

Seventh Symposium on Combustion. London : Butterworth’s Scientific Publications. 
SPENCE, D. A. 1961 Unsteady shock propagation in a relaxing gas. Proc. Roy. SOC. A, 

264, 221. 
STOLLERY, J. L. & PARK, C. 1963 Computer solutions to the problem of vibrational re- 

laxation in hypersonic nozzle flows. 2,mperial College Report, no. 115. 
STOLLERY, J. L. & SMITH, J. E. 1962 A note on the variation of vibrational temperature 

along a nozzle. < J .  Fluid Mech. 13, 225. 
TSUCHIYA, S. 1962 Relaxation of chemical equilibrium in gases flowing through de Lava1 

nozzle. Aero. Res. Inst. Tokyo Report, no. 371. 
WATSON, G. N. 1952 Theory of Bessel functions. Cambridge University Press. 
WOOD, G. P. 1956 Calculations of the rate of thermal dissociation of air behind normal 

dimensional flow. AEDC-TN-60-156, PIBAL-R-525. 

shock waves a t  Mach numbers of 10, 12, and 14. N.A.C.A. T N  3634. 


